

ASX: ANX

12 SEPTEMBER 2022

Significant increase for Salt Creek Resource

- JORC2012 Mineral Resource completed for the Salt Creek Deposit at the Whim Creek Project (Northern Pilbara, WA)
- Updated Salt Creek Resource Estimate:
 - ▶ Copper Domain: <u>1.72 Mt @ 1.73% Cu</u>
 (Cu ≥ 0.80%, Zn < 2.50%)
 - ➤ Zinc Domain: <u>1.03 Mt @ 8.86% Zn, 2.70% Pb, 63 g/t Ag and 0.33 g/t Au</u> (Zn ≥ 2.50%)
- 35,700 T contained Copper (up by 99%) and 95,000 T Contained Zinc (up by 22%)
- Indicated Resource Tonnes increased by over 80%
- Potential for future resource growth with main shoot open at depth
- Key DFS workstreams completed, results being compiled to be released in Q4 2022. Significant benefits delivered as a result of the "Anax technology integration strategy."
- Works Approval and Mining Proposal expected to be granted later this quarter

Anax Metals Limited (ASX: ANX, **Anax**, or the **Company**) is pleased to announce a revised JORC 2012 Mineral Resource for the Salt Creek Deposit (**Deposit**) at the Whim Creek Copper-Zinc Project (**Project**) located 115km southwest of Port Hedland in the West Pilbara Region of Western Australia (Figure 1).

The Company's Managing Director, Geoff Laing, said "the significant increase in copper and zinc resources at Salt Creek demonstrates, once again, the fantastic opportunity this Pilbara project offers. Salt Creek remains open at depth with significant exploration upside and we look forward to evaluating the underground and growth potential at this high grade deposit"

The Mineral Resource at the Salt Creek Deposit represents another significant step in the Whim Creek Project's development pathway and has contributed to an updated global Mineral Resource for the Whim Creek Project, which is 80% owned by Anax and 20% by Develop Global Limited (ASX: DVP, Develop).

The Mineral Resource was completed following a database audit, updated geological interpretations and updated methodology on the assignment of bulk densities. The Mineral Resource modelling and estimate was undertaken by independent resource consultancy, Trepanier Pty Ltd, and has produced a JORC2012 compliant Indicated and Inferred Mineral Resource as shown in Table 1 and Table 2.

Tabla	1. Cal+ (Crook zinc	domain	Minoral	Docourco	hy Class	fication	(2 E06 7n	cut off)
lable	T. Suit C	.reek zinc	aomam	willerui	Resource	uy ciassi	jication	(Z.3% ZII	cut-ojj)

Classification	KTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Indicated	770	0.58	9.91	2.97	73	0.39
Inferred	255	0.53	5.70	1.88	31	0.14
TOTAL Zn Resources	1,025	0.57	8.86	2.70	63	0.33
		Cu T	Zn T	Pb T	Ag oz	Au oz
Contained T/Oz	,	5,800	90,700	27,600	2,070,000	10,800

Note: Appropriate rounding applied

Table 2: Salt Creek copper domain Mineral Resource by Classification (0.80% Cu cut-off, Zn < 2.5%)</th>

Classification	KTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Indicated	1,070	2.03	0.23	0.03	4	0.08
Inferred	650	1.25	0.28	0.04	4	0.05
TOTAL Cu Resources	1,720	1.73	0.25	0.03	4	0.07
		Cu T	Zn T	Pb T	Ag oz	Au oz
Contained T/Oz		29,900	4,300	500	223,000	3,900

Note: Appropriate rounding applied

Figure 1: Whim Creek Project Location

Indicated Resources for Salt Creek have increased by over 80% and makes up 67% of the overall Mineral Resource. The remaining resources are in the Inferred category (Figure 2). The classification is supported by drilling density, geological continuity and confidence in the geological interpretation.

Figure 2: Oblique view of the Salt Creek Deposit showing resource classification. View Direction is -15° towards SW (Local Grid.

The Salt Creek resource is predominantly fresh, with transitional material making up less than 1% of the zinc domain. No transitional or oxide material occurs within the copper domain. A zinc oxide zone 237 Kt @ 2.30% Zn (1% Zn cut-off) occurs near surface and a zinc precipitate may be produced through heap leaching at Whim Creek, but this is subject to confirmatory test work and as a result the oxide zone has been excluded from the reported resource.

Salt Creek remains open at depth with four previous drill holes intersecting mineralisation over a lateral distance of 250 metres. The best intersection of the four deep holes was from **16VSCD008** which returned **18.7m @ 2.42% Cu** from 457.8m, including **7.6m @ 3.39% Cu** from 468.9m.

This drill hole is the deepest intersection to date in an intepreted steeply plunging high-grade copper zone where **WSD128**, located 70m up-plunge from 16VSCD008, intersected **22m @ 3.43% Cu** from 410m, including **10m @ 5.56% Cu** from 411m (Figure 3).

PROJECT HOLE# DATE FROM TO TRAZ 2.3.17107 H8.65 H2.32 #108 H15-432 H15-

Further details are provided in Appendix 1 and the associated JORC-tables.

Figure 3: Massive sulphides in historical drill hole, WSD128. This high-grade shoot remains open at depth

Study Update

In January 2022, Anax commenced a Definitive Feasibility Study (DFS) for the Whim Creek Project. The DFS is examining construction of a small modular 320 Ktpa polymetallic concentrator that will be fed with ore pre-concentrated using a combination of ore sorters (for +8mm material) and gravity seperation (for -8mm material).

The focus of the "start-up" DFS is on the most advanced deposits, Mons Cupri and Whim Creek, which will account for the first 4 to 5 years' worth of production and supply the bulk of the concentrator feed over the life of mine. This will enable Anax to deliver its start-up DFS in under a year and rapidly move to an investment decision, which could see production commence at Whim Creek in 2023.

In addition, Anax is progressing feasibility studies and baseline environmental work at satellite deposits, Evelyn and Salt Creek. Drilling in the first half of 2022 has allowed for PFS-level geotechnical investigations to be completed at both deposits. Metallurgical studies for both Evelyn and Salt Creek are in progress and hydrogeological investigations will commence shortly. Open-pittable resources from Evelyn and Salt Creek may be included in the mining inventory for the start-up DFS, but both deposits may be better suited to underground development which Anax will evaluate in consulation with its JV partner, Develop (ASX: DVP, an underground mining services company and developer), over the coming months.

The start-up DFS for the Whim Creek Project is progressing well and expected to be completed this quarter, with results released to the market early in the next quarter. Recently completed studies include design of the concentrator by Gekko Systems (Figure 4), crushing and ore sorting circuits, in-line pressure jig and associated infrastructure, as well as non-process infrastructure.

Figure 4: Proposed Whim Creek concentrator

The Anax strategy to minimise the scale of processing infrustructure by decoupling the mining and processing using sorting and jigging has delivered significant benefits both in terms of capital and operating costs. Anax is estimating pre-production capital (including contingencies) to total between \$60 and \$70 million, slightly higher than what was estimated in the Scoping Study.¹

Permitting

Anax previously submitted a Mining Proposal and Works Approval covering the initial stages of mining at Mons Cupri and infrastucture development at the processing area. A second stage Mining Proposal and Works Approval encompassing the Whim Creek deposit and further infrastructure development is currently being prepared and will be submitted in September 2022. A clearing permit for Mons Cupri has been received, while a clearing permit for Whim Creek has been submitted to DMIRS and advertised for public comment.

All required regulatory approvals are expected to be in place by early 2023.

Community

In June 2022, members from the Anax management team met with the Ngarluma Aboriginal Corporation (NAC) Board members to discuss re-opening of the historically significant Whim Creek Hotel which is owned by NAC. Under a proposed agreeement, Anax would assist NAC to reopen the hotel which has been closed since 2019 following damage sustained during a major cyclone.

The Whim Creek Hotel accommodated the Whim Creek mining work force when the mine was previously operated during the mid 2000s. Working with NAC to reopen the Whim Creek Hotel provides a fantastic opportunity for cooperation between Anax and the traditional owners. Anax looks forward to developing this mutually beneficial opportunity, through which housing the planned Anax mining workforce at the hotel could provide a source of employment and income for the local community.

Figure 5: Anax management and NAC Board at the Whim Creek Hotel (June 2022)

Whim Creek Project Global Resource

The updated Whim Creek Project Global Mineral Resource for copper dominant and zinc dominant resources (exclusive of each other) are shown below in Table 3 and Table 4.

Deposit	Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Mons Cupri	Measured	990	1.62	1.42	0.61	38	0.28
(Cu ≥ 0.4%)	Indicated	3,130	0.84	0.47	0.20	16	0.09
	Inferred	400	0.60	0.22	0.10	10	0.03
Salt Creek	Measured	-	-	-	-	-	-
(Cu ≥ 0.8% &	Indicated	1,070	2.03	0.23	0.03	4	0.08
Zn < 2.5%)	Inferred	650	1.25	0.28	0.04	4	0.05
Whim Creek	Measured	-	-	-	-	-	-
(Cu ≥ 0.4%)	Indicated	1,750	1.10	0.63	0.16	6	0.04
	Inferred	660	0.56	0.17	0.08	2	0.02
Evelyn	Measured	-	-	-	-	-	-
(No Cut-off)	Indicated	440	2.40	3.89	0.30	40	0.95
	Inferred	110	1.31	1.80	0.14	15	0.19
COMBINED	Measured	990	1.62	1.42	0.61	38	0.28
	Indicated	6,390	1.22	0.71	0.17	13	0.14
	Inferred	1,820	0.86	0.32	0.07	5	0.04
TOTAL Cu R	esources	9,200	1.19	0.71	0.20	14	0.13
C	ontained T/Oz		Cu T	Zn T	Pb T	Ag oz	Au oz
			110,000	65,000	18,000	4,170,000	39,400

Table 3: Whim Creek Project copper domains Mineral Resource by Classification (various cut-offs used)

Note: Appropriate rounding applied

Table 4: Whim Creek Project zinc domains Mineral Resource by Classification (various cut-offs used)

Deposit	Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Mons Cupri	Measured	70	0.16	4.56	1.79	53	0.23
(Zn ≥ 2.0% &	Indicated	340	0.09	3.56	1.01	38	0.07
Cu < 0.4%)	Inferred	150	0.08	4.84	1.96	27	0.04
Salt Creek	Measured	-	-	-	-	-	-
(Zn ≥ 2.5%)	Indicated	770	0.58	9.91	2.97	73.16	0.39
	Inferred	255	0.53	5.70	1.88	31.43	0.14
Whim Creek	Measured	-	-	-	-	-	-
(Zn ≥ 2.0% &	Indicated	120	0.12	3.22	0.44	12	0.08
Cu < 0.4%)	Inferred	45	0.13	2.46	0.40	9	0.04
COMBINED	Measured	70	0.16	4.56	1.79	53	0.23
	Indicated	1,230	0.40	7.55	2.20	58	0.27
	Inferred	450	0.34	5.07	1.75	27	0.10
TOTAL Zn Res	sources	1,750	0.37	6.75	2.05	50	0.22
Com	stained T/Oz		Cu T	Zn T	Pb T	Ag oz	Au oz
Con			7,000	118,000	36,000	2,790,000	12,600

Note: Appropriate rounding applied

This announcement is authorised for ASX lodgment by the Board of the Company

For further information, please contact:

Anax Metals Limited 20 Kings Park Road, West Perth WA 6005 Telephone: 08 6143 1840

References:

1. Exceptional Value Added to Whim Creek Scoping Study, 17 January 2022 (ASX : ANX)

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information compiled by Mr Andrew McDonald. Mr McDonald is an employee and shareholder of Anax Metals Ltd and a member of the Australian Institute of Geoscientists. Mr McDonald has sufficient experience of relevance to the style of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr McDonald consent to the inclusion in this report of the matters based on information in the form and context in which they appear.

The information in this report that relates to the Mineral Resource for Mons Cupri was first reported by the Company in accordance with Listing Rule 5.8 in the Company's prospectus dated 18 September 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the prospectus and that all material assumptions and technical parameters underpinning the estimate in the prospectus continue to apply and have not materially changed.

The information in this report that relates to the Mineral Resource for Whim Creek was first reported by the Company in accordance with Listing Rule 5.8 in the ASX Release of 25 May 2021. The Company confirms that it is not aware of any new information or data which materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimate in the original announcement continue to apply and have not materially changed.

The information in this report that relates to the Mineral Resource for Evelyn was first reported by the Company in accordance with Listing Rule 5.8 in the ASX Release of 17 January 2022. The Company confirms that it is not aware of any new information or data which materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimate in the original announcement continue to apply and have not materially changed.

The information in this report that relates to Mineral Resources for the Salt Creek Deposit is based on and fairly represents information compiled by Mr Andrew McDonald (employee and shareholder of Anax Metals Ltd) and Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd). Mr McDonald is a member of the Australian Institute of Geoscientists and Mr Barnes is a member of both the Australasian Institute of Mining and Metallurgy and the Australasian Institute of Geoscientists. Mr McDonald and Mr Barnes have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr McDonald is the Competent Person for the database (including all drilling information), the geological and mineralisation models, construction of the 3-D model plus the estimation. Mr McDonald and Mr Barnes to the inclusion in this report of the matters based on information in the form and context in which they appear.

APPENDIX 1

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to JORC Table 1, Sections 1 to 3 included below).

Geology and geological interpretation

The regional geology presented here is reproduced from "The Combined Annual Mineral Exploration Report for the period 4 June 1999 to 3 June 2000, Salt Creek Mining Leases 47/323 and 47/324 West Pilbara Mineral Field, Western Australia GSWA Reference Nos. C276/1996, M6980.

"The Pilbara region is a complex arrangement of Early Archaean metavolcanic and metasedimentary sequences that surround large domal granitoid masses. The supracrustal sequences accumulated over a period of about 800 m.y. (~3560-2770 Ma), with the granitoids emplaced over a similar but slightly younger time span. The Pilbara granitoid-greenstone terrain has been divided into several tectonostratigraphic domains, bounded by NE-SW trending structural lineaments.

The base of the Whim Creek Group is marked by an unconformity with the Caines Well Granite. The De Grey Group, consisting of the Constantine Sandstone and the Mallina Formation, unconformably overlays the Whim Creek Group. The Mount Negri and Louden Volcanics unconformably overlay the De Grey Group.

The Whim Creek volcanics crop out as a continuous arcuate belt some 85 km long and 5-10 km wide, that extends around the southern, eastern and northern flanks of the ovoid Caines Well batholith. The western limit of the southern arm of the volcanic arc is blanketed by Late Archaean rocks, although it may extend further west and overly the Sholl belt. The northern flank is wedged out between the Caines Well batholith and the Sholl Fault.

All stratabound VMS deposits in the Whim Creek belt (ie, Mons Cupri, Salt Creek and Whim Creek) are at the same or equivalent stratigraphic level within the Mons Cupri Volcanics or Rushall Slate and their distribution indicates widespread volcanogenic hydrothermal activity during accumulation of the volcanic pile".

The Salt Creek prospect, located 17km northwest of the Whim Creek processing facility, occurs on the northern side of the Caines Well Granitic Complex. The prospect was discovered in the mid-1970s by Texas Gulf as a small gossan. Unlike the Whim Creek or Mons Cupri prospects, no mining has been carried out at the Salt Creek prospect to date.

The known mineralisation is hosted in tuffaceous siltstones and is overlain by andesite flows and tuffs. Massive sulphides at Salt Creek occur as two separate lenses approximately 200 m apart along strike. The western lens is interpreted to extend to a depth of approximately 250 m below surface, while the eastern lens extends to at least 420 m below surface and remains open at depth.

These deposits are interpreted to form in close association with submarine volcanism through the circulation of hydrothermal fluids and subsequent exhalation of sulphide mineralisation on the ancient seafloor similar to present-day black smokers. VMS mineralisation typically forms concordant or stratabound lenses of polymetallic semi-massive to massive sulphides, which are underlain by discordant feeder-type vein-systems and associated alteration.

The mineralised domain interpretations were based upon a combination of geology, mineralisation (sulphide) logging, supporting multi-element lithochemistry (where available) and a lower cut-off grade of 0.4% Cu (for the lower-grade boundary of the Cu zones) and 1% Zn (for the lower-grade boundary of the Zn zones). Distinct internal high-grade massive sulphide Zn zones were also modelled correlating to an approximate 8-10% Zn cut-off.

Domains were constrained by drilling along strike and extrapolated down plunge roughly to approximately 50m where appropriate. Domains were extrapolated below the deepest drill intercept based on the geological model and interpreted continuity, although the deeper blocks with limited drill support were not necessarily classified according to the JORC (2012) Code and would be excluded from the estimate.

Drilling techniques and hole spacing

Drilling at the deposit used to inform the interpretation and calculate the Mineral Resource was primarily diamond/RC pre-collar with diamond tail (109 holes for 31,603 metres) and RC drilling (63 holes for 8,021 metres). The majority of the drilling was completed by Straits Resources Limited (Straits), with 107 RC and diamond holes for 25,952 m completed between 2004 – 2008.

Drill holes at Salt Creek are orientated primarily towards 330 degrees, while a small number of drill holes have also been drilled towards 150 degrees and towards 240 degrees. Drill sections at Salt Creek are typically spaced 15 m to 20 m apart, with holes spaced 15 to 20m apart on section near surface, increasing to >50 m at depth.

Sampling and sub-sampling techniques

Diamond drilling was the main technique accounting for over 80% of the samples used to inform the estimate. Core diameter was primarily NQ, with some BQ (historical) and HQ diameter core also produced using a variety of rig types. RC drilling typically used face sampling hammers with diameters between 5.25" and 6" after 2004. A total of 244 RC and 211 diamond holes (28 with RC pre-collars) have been completed across the Salt Creek tenements. Of these, 109 diamond and 63 RC holes were used to inform the interpretation.

Drill core was typically oriented by the drillers placing orientation marks on the bottom of the core at the end or start of every run. Drill core recovery was typically very high or in full (averaged >97% in mineralised intervals where core recovery was recorded). The core was typically marked up, photographed and geologically logged at site. Core was sampled by cutting the nominated samples in half or quarters for geochemical assays.

Field duplicate samples were typically collected at a ratio of approximately 1:40 samples, while field standards were inserted at a ratio of approximately 1:40 samples.

Sample analysis method

Texasgulf Australia Ltd (NUD-series of drill holes) typically submitted ½ core samples to Analabs Pty Ltd where assays were determined using a mixed acid digestion with an AAS finish. Straits Resources Ltd (WSC and WSD-series of holes) typically submitted samples to ALS Perth for 4 acid digest with ICP-AES/MS determination, while Venturex submitted samples to Ultratrace Perth for fusion or 4 acid digestions with ICP-AES determination. Both used Fire Assays with AAS finish to determine gold grades.

Cut-off grades

Cut-off grades reported at 0.80% Cu or 2.50% Zn are consistent with those reported for similar deposit types and are considered appropriate for the style of mineralisation encountered and a potential initial open pit mining method followed by underground mining.

Estimation Methodology

Drill hole samples were flagged with wire framed domain codes. Sample data was composited for elements Cu, Pb, Zn, Au, Ag, Fe and S to 1m using a best fit method. Since all holes were typically sampled on 1m intervals, there were only a very small number of residuals in the diamond core holes that were sampled to geological contacts.

A combination of methods, including grade histograms, log probability plots and statistical tools, were used to ascertain whether top cutting was required. Influences of extreme sample distribution outliers are reduced by top-cutting on a domain basis. Based on this statistical analysis of the data population, top-cuts were only applied to Cu for Domains 12 (10.0% Cu) and 21 (4.0% Cu), Pb for Domain 69 (2.5% Pb), Zn for Domains 51 (6.0% Zn), 62 (12.0% Zn), and 69 (5.0% Zn), plus Au for Domain 55 (1.5 ppm Au) and plus Ag for Domain 54 (150 ppm Ag), 55 (400 ppm Ag), 61 (40 ppm Ag), 62 (250 ppm Ag) and 81 (800 ppm Ag).

Directional variograms were modelled by domain using traditional variograms. Nugget values are low to moderate (around 10-20%) and structure ranges up to 50-80m. Domains with more limited samples were assigned variography of geologically similar, adjacent domains.

Block model was constructed with parent blocks of 10m (E) by 8m (N) by 10m (RL) and sub-blocked to 0.625m (E) by 0.5m (N) by 0.625m (RL). All estimation was completed to the parent cell size. Three estimation passes were used. The first pass had a limit of 45m, the second pass 90m and the third pass searching a large distance to fill the blocks within the wire framed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole of 4 samples.

A total of 4,853 density measurements have been completed across the Salt Creek project area with 3,166 within the immediate Salt Creek deposit area – and 637 from within the modelled mineralised domains. The vast majority are by Archimedes immersion methods on a mix of whole, half and quarter

core. Statistical analysis included comparison by mineralised domains vs. waste, rock type, oxidation, depth below surface and potential correlation with multi-element assays (including sulphide zone elements Fe, Cu, Zn, Pb and S – and combinations thereof). The result for the combined Cu+Zn+Pb+Fe regression was determined to be most appropriate for the mineralised domains.

Classification criteria

The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. All factors considered; the resource estimate has in part been assigned to Indicated resources with the remainder to the Inferred category.

Mining and metallurgical methods and parameters

The potential mining method is considered to be open pit mining and/or underground mining. Polymetallic flotation test work by Texasgulf Australia Ltd and Straits Resources Ltd was completed on representative material from Zn dominant and Cu dominant domains. Test work demonstrated potentially economic recoveries and concentrate grades could be obtained through standard sequential polymetallic flotation.

APPENDIX 2: Drill hole collar details and intercepts for Mineral Resource domains at the Salt Creek Deposit (MGA Zone 50)

Zn Domain Intercepts

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
16VSCD001	DDH	573754	7704759	8	-60	330	163	94	150.3	1.6	0.06	19.45	43.85	0.80	551
16VSCD001	DDH	573754	7704759	8	-60	330	163	61	152.0	2.1	0.03	0.70	1.69	0.01	21
16VSCD003	DDH	573616	7704701	7	-60	330	109	64	20.0	2.0	0.15	0.96	0.47	0.15	1
16VSCD003	DDH	573616	7704701	7	-60	330	109	62	75.4	6.6	0.05	4.19	7.71	0.41	248
16VSCD004	DDH	573403	7704571	8	-60	330	159	51	133.6	3.5	0.04	0.64	0.89	0.06	8
16VSCD007	DDH	574077	7704643	19	-70	330	583	68	448.4	9.6	0.86	0.03	3.97	0.25	10
16VSCD007	DDH	574077	7704643	19	-70	330	583	66	539.0	2.0	0.01	1.56	2.41	0.03	23
16VSCD009	DDH	573601	7704547	18	-64	335	328	54	265.2	10.7	0.09	1.36	3.43	0.07	9
16VSCD009	DDH	573601	7704547	18	-64	335	328	83	268.0	5.0	0.56	2.16	14.52	0.23	23
ACLD001	DDH	576637	7705356	10	-60	337	300	70	133.0	10.5	0.03	0.39	0.69		2
ACLD003	DDH	576789	7705689	10	-55	170	251	70	173.8	5.4	0.56	0.02	1.17		
ACLD013	RC_DT	576468	7705224	10	-60	340	135	70	66.3	6.7	0.36	0.57	1.85	0.01	2
ACLD016	RC_DT	576247	7705241	10	-60	160	180	70	60.0	12.0	0.04	0.03	0.70		1
ACLD021	RC_DT	576730	7705619	9	-70	160	178	70	135.0	12.0	0.03	0.03	0.54	0.01	1
ACLD022	RC_DT	576781	7705653	9	-70	160	232	70	201.0	9.0	0.01	0.17	0.71	0.01	1
ACLR014	RC	576408	7705470	8	-60	170	80	70	18.0	3.0	0.03	0.15	0.76	0.00	1
BBD001	RC_DT	579437	7706645	12	-61	169	327	70	289.0	10.0	0.05	1.64	4.19	0.01	5
BBD002	RC_DT	579357	7706630	12	-61	170	271	70	235.0	10.0	1.26	1.91	5.69	0.03	9
BBD003	DDH	579516	7706654	12	-52	173	312	70	276.0	4.0	0.58	3.78	11.81	0.06	11
BBD006	RC_DT	579160	7706419	12	-60	340	244	70	183.0	5.0	0.27	0.65	2.68	0.01	2
BBD007	RC_DT	579082	7706430	12	-60	344	205	70	121.0	13.0	0.37	0.63	2.72	0.04	5
BBD009	DDH	579146	7706330	13	-60	2	379	70	334.0	15.0	0.80	1.45	3.92	0.04	28
BBD010	DDH	579213	7706400	12	-60	0	238	70	192.0	14.0	0.09	0.83	2.91	0.03	8
BBD015	DDH	579222	7706331	12	-60	0	439	70	364.0	3.0	0.04	0.18	0.56	0.02	6
BBD021	DDH	579422	7706690	13	-58	170	420	70	385.0	5.0	0.09	0.84	3.15	0.05	4

ASX Announcement | ASX Code: ANX | 12 September 2022

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
BBD023	DDH	579550	7706602	13	-60	181	295	70	247.4	12.6	0.18	1.06	2.70	0.02	5
BBRC004	RC	579209	7706547	12	-60	170	95	70	57.0	5.0	0.36	0.87	2.46	0.08	7
BBRC005	RC	579132	7706536	12	-60	160	100	70	63.0	15.0	0.14	1.22	3.36	0.01	11
BBRC006	RC	579369	7706551	13	-60	170	100	70	56.0	10.0	0.11	1.32	3.69	0.08	11
BBRC007	RC	579448	7706566	13	-60	170	130	70	80.0	23.0	0.09	1.34	3.69	0.12	5
NUD0002	DDH	573731	7704642	12	-50	330	225	62	169.5	12.3	0.03	0.25	1.14	0.03	4
NUD0003	DDH	573789	7704746	11	-60	330	205	94	166.3	1.4	0.10	13.13	47.75		330
NUD0008	DDH	573808	7704711	12	-70	330	233	62	218.3	0.7	0.09	3.60	7.38		83
NUD0009	DDH	573477	7704585	11	-60	330	217	82	131.8	1.8	0.31	4.73	21.44	0.42	57
NUD0009	DDH	573477	7704585	11	-60	330	217	55	133.6	8.4	0.88	0.04	1.92	0.22	9
NUD0009	DDH	573477	7704585	11	-60	330	217	54	144.0	6.0	0.69	0.01	0.52	0.06	10
NUD0009	DDH	573477	7704585	11	-60	330	217	83	146.4	1.1	0.59	0.02	20.00		10
NUD0011	DDH	573491	7704559	15	-75	330	281	54	195.1	5.9	6.82	0.08	0.65	0.37	25
NUD0011	DDH	573491	7704559	15	-75	330	281	83	198.9	0.3	3.42	0.01	28.00	0.24	10
NUD0011	DDH	573491	7704559	15	-75	330	281	84	200.2	0.8	0.34	14.74	35.00		65
NUD0011	DDH	573491	7704559	15	-75	330	281	52	211.8	0.2	0.27	0.03	15.50	0.33	20
NUD0011	DDH	573491	7704559	15	-75	330	281	51	221.5	1.0	0.08	0.75	1.95		20
NUD0013	DDH	573593	7704558	20	-75	330	269	54	235.0	7.6	0.04	1.19	1.59	0.06	10
NUD0013	DDH	573593	7704558	20	-75	330	269	83	236.8	0.3	0.02	14.50	28.50		105
NUD0013	DDH	573593	7704558	20	-75	330	269	84	242.9	1.7	0.16	3.76	19.14	0.33	50
NUD0016	DDH	573453	7704628	10	-60	330	125	55	92.0	10.5	0.08	2.36	4.45	0.06	31
NUD0016	DDH	573453	7704628	10	-60	330	125	81	96.3	1.3	0.37	5.63	33.03	0.66	104
NUD0016	DDH	573453	7704628	10	-60	330	125	82	101.0	8.0	0.39	13.77	21.58	1.17	205
NUD0018	DDH	573452	7704732	10	-65	150	229	54	182.2	13.4	0.39	0.20	3.19	0.26	20
NUD0018	DDH	573452	7704732	10	-65	150	229	83	183.3	4.5	0.60	3.99	29.24	0.69	50
NUD0018	DDH	573452	7704732	10	-65	150	229	84	192.6	9.0	0.74	0.86	17.03	1.03	26
NUD0021	DDH	573375	7704769	10	-60	150	300	51	251.4	11.8	1.56	5.27	8.14	0.15	38
NUD0022	DDH	573352	7704740	10	-65	150	294	51	268.9	3.0	0.01	0.01	0.67		

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
NUD0023	DDH	573625	7704730	10	-60	330	124	62	47.7	8.6	0.04	1.38	6.20		36
NUD0024	DDH	573517	7704615	10	-60	330	173	54	156.0	1.0	0.02	0.27	0.58		24
NUD0026	DDH	573403	7704717	10	-55	149	154	55	107.7	9.4	0.05	1.21	2.52	0.10	19
NUD0026	DDH	573403	7704717	10	-55	149	154	81	115.4	10.3	0.20	7.47	14.58	0.70	84
NUD0027	DDH	573686	7704724	11	-55	330	145	62	105.0	3.7	0.17	0.26	0.82		3
NUD0027	DDH	573686	7704724	11	-55	330	145	93	108.0	0.2	0.14	1.30	13.00		0
NUD0032	DDH	573729	7704748	11	-60	330	151	61	137.4	1.8	0.02	0.17	0.73		5
NUD0032	DDH	573729	7704748	11	-60	330	151	94	138.6	2.1	0.08	8.17	34.56		215
NUD0034	DDH	573647	7704691	11	-60	330	148	64	65.7	2.4	0.03	0.46	4.22		3
NUD0034	DDH	573647	7704691	11	-60	330	148	91	67.0	0.8	0.21	0.81	25.15		25
NUP0056	RAB	573370	7704675	10	-90	0	4	59	0.0	4.0	0.01	0.20	0.22		
NUP0132	RAB	573670	7704857	10	-90	0	6	70	0.0	6.0	0.02	0.02	0.51		
NUP0135	RAB	573726	7704860	10	-90	0	6	70	0.0	6.0	0.02	0.02	0.70		
SCD001	DDH	573442	7704597	10	-61	334	147	55	95.0	3.0	0.01	0.26	0.75	0.03	28
SCD001	DDH	573442	7704597	10	-61	334	147	81	95.5	3.0	0.27	12.12	30.98	0.99	160
SCD001	DDH	573442	7704597	10	-61	334	147	52	136.1	1.0	0.03	0.10	0.24	0.05	5
SCD002	DDH	573466	7704613	10	-62	332	150	55	120.3	3.2	0.05	2.30	3.79	0.08	34
SCD002	DDH	573466	7704613	10	-62	332	150	54	126.4	4.7	0.06	1.42	2.76	0.07	52
SCD002	DDH	573466	7704613	10	-62	332	150	83	127.9	3.5	0.34	12.34	23.43	1.07	148
SCD002	DDH	573466	7704613	10	-62	332	150	84	133.4	0.4	0.09	9.43	16.10	6.44	290
SCD005	DDH	573697	7704765	11	-65	333	120	61	107.0	4.6	0.03	0.17	0.93	0.05	4
SCD005	DDH	573697	7704765	11	-65	333	120	94	108.0	3.5	0.66	7.10	49.22	4.13	327
SCD007	DDH	573471	7704576	12	-67	333	193	54	150.9	7.9	2.42	0.86	4.94	0.20	19
SCD007	DDH	573471	7704576	12	-67	333	193	83	152.1	5.2	0.57	1.53	20.87	0.37	30
SCD007	DDH	573471	7704576	12	-67	333	193	84	160.0	0.9	1.90	2.39	14.70	0.17	35
SCD007	DDH	573471	7704576	12	-67	333	193	52	176.0	1.0	0.18	0.06	1.82	0.02	3
SCD009	DDH	573717	7704806	11	-66	333	90	61	72.0	1.3	0.07	0.36	2.02	0.05	21
SCD009	DDH	573717	7704806	11	-66	333	90	94	72.4	4.8	0.20	9.03	49.22	0.91	311

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
SCD010	DDH	573682	7704802	11	-62	331	82	61	61.0	3.9	0.02	0.42	2.03	0.04	6
SCD010	DDH	573682	7704802	11	-62	331	82	94	63.9	1.1	0.12	15.00	45.00	2.73	440
SCD012	DDH	573647	7704729	11	-63	333	103	63	49.0	10.5	0.05	0.36	1.58	0.06	4
SCD012	DDH	573647	7704729	11	-63	333	103	92	50.5	3.6	0.18	0.06	15.64	0.57	9
SCD012	DDH	573647	7704729	11	-63	333	103	62	78.0	9.4	0.05	0.60	3.44	0.11	24
SCD012	DDH	573647	7704729	11	-63	333	103	93	83.2	2.6	0.13	1.30	16.33	0.54	29
SCD013	DDH	573424	7704644	10	-63	330	114	55	76.6	7.4	0.09	1.89	3.65	0.40	44
SCD013	DDH	573424	7704644	10	-63	330	114	81	79.2	1.6	0.40	14.19	22.39	2.19	226
SCD013	DDH	573424	7704644	10	-63	330	114	82	84.5	1.5	0.57	10.78	17.27	2.73	212
SCD015	DDH	573452	7704551	13	-72	335	234	51	217.2	8.8	0.64	0.41	0.99	0.03	12
SCKD042	DDH	573590	7704645	10	-80	330	216	54	208.0	2.0	0.03	0.07	0.32	0.01	1
SCR001	RC	573630	7704764	11	-59	330	75	63	12.0	13.0	0.08	1.27	0.82		16
SCR004	RC	573389	7704668	10	-60	328	57	59	16.0	1.0	0.03	0.45	0.45		10
SCR004	RC	573389	7704668	10	-60	328	57	57	26.0	3.0	0.01	0.44	0.61		5
SCR004	RC	573389	7704668	10	-60	328	57	55	36.0	4.0	0.02	0.63	1.44		34
SCR011	RC	573426	7704668	10	-59	330	95	55	55.0	9.0	0.02	0.37	0.78	0.02	47
SCR011	RC	573426	7704668	10	-59	330	95	54	70.0	7.0	0.03	1.43	0.70	0.02	96
SCR012	RC	573435	7704655	10	-61	330	107	55	80.0	9.0	0.05	0.64	0.85	0.03	61
SCR012	RC	573435	7704655	10	-61	330	107	54	89.0	5.0	0.02	0.85	0.78	0.04	55
TBBD-7A	DDH	579236	7706576	15	-55	354	73	70	63.0	5.3	0.06	0.43	2.52		11
TWBD-4	DDH	578171	7706195	15	-50	340	201	70	175.3	4.0	0.09	0.73	2.44		6
WAD003	RC_DT	576769	7705502	9	-60	340	544	70	83.0	38.0	0.07	0.01	0.93	0.01	1
WBD001	RC_DT	577495	7706256	10	-71	162	363	70	275.0	4.0	0.06	0.36	1.59	0.02	14
WBD003	DDH	577957	7706271	10	-70	160	190	70	107.0	3.0	0.04	0.35	1.71	0.03	4
WBRC009	RC	578048	7706326	10	-65	160	167	70	132.0	4.0	0.04	0.19	0.77	0.03	3
WBRC015	RC	577487	7706139	10	-70	160	203	70	141.0	7.0	0.05	2.82	9.72	0.17	114
WBRC019	RC	577865	7706232	10	-65	160	131	70	114.0	4.0	0.09	0.13	1.22	0.16	4
WBRC022	RC	577586	7706184	10	-70	160	200	70	148.0	12.0	0.19	0.44	1.04	0.03	8

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WBRC024	RC	577844	7706272	10	-71	159	179	70	135.0	6.0	0.10	0.26	3.15	0.11	9
WSC006	RC	573613	7704680	10	-60	330	80	64	29.0	12.0	0.37	0.21	1.87	0.16	46
WSC006	RC	573613	7704680	10	-60	330	80	91	36.0	2.0	0.27	0.37	26.55	0.06	16
WSC006	RC	573613	7704680	10	-60	330	80	62	75.0	5.0	0.02	0.04	0.50	0.04	2
WSC007	RC	573594	7704713	10	-60	330	80	62	45.0	3.0	0.03	1.62	2.36	0.02	62
WSC010	RC	573447	7704602	10	-60	330	123	55	97.0	11.0	0.11	1.58	2.68	0.15	38
WSC010	RC	573447	7704602	10	-60	330	123	81	100.0	4.0	0.25	6.03	21.08	0.57	53
WSC010	RC	573447	7704602	10	-60	330	123	82	110.0	8.0	1.33	12.39	28.13	1.05	442
WSC011	RC	573417	7704652	10	-60	330	99	55	56.0	13.0	0.08	1.27	1.74	0.33	282
WSC011	RC	573417	7704652	10	-60	330	99	81	65.0	7.0	0.90	14.77	25.80	2.20	2221
WSC014	RC	573661	7704796	10	-60	330	96	94	54.0	2.0	0.01	7.68	21.58	0.65	179
WSC014	RC	573661	7704796	10	-60	330	96	61	56.0	20.0	0.01	0.21	1.23	0.04	4
WSC024	RC	573649	7704815	10	-60	330	66	61	39.0	13.0	0.01	0.02	0.89	0.01	0
WSC026	RC	573639	7704714	10	-60	240	69	64	45.0	5.0	0.07	0.30	2.51	0.05	5
WSC026	RC	573639	7704714	10	-60	240	69	91	46.0	6.0	0.17	4.53	18.55	0.14	28
WSC027	RC	573659	7704728	10	-60	240	81	64	60.0	5.0	0.02	0.10	4.00	0.15	2
WSC027	RC	573659	7704728	10	-60	240	81	91	63.0	4.0	0.09	3.89	27.55	0.82	42
WSC038	RC	573408	7704670	10	-60	328	82	57	28.0	8.0	0.02	0.40	0.67	0.03	7
WSC038	RC	573408	7704670	10	-60	328	82	55	44.0	6.0	0.02	0.28	0.91	0.04	51
WSC039	RC	573641	7704706	10	-60	329	148	63	52.0	15.0	0.03	0.30	1.55	0.04	4
WSC039	RC	573641	7704706	10	-60	329	148	62	76.0	4.0	0.01	0.41	1.57	0.01	9
WSC040	RC	573684	7704838	10	-62	331	64	61	24.0	32.0	0.02	0.04	1.05	0.02	0
WSC041	RC	573696	7704816	10	-62	331	88	61	46.0	6.0	0.04	0.74	2.15	0.06	18
WSC041	RC	573696	7704816	10	-62	331	88	94	49.0	3.0	0.13	12.77	49.20	1.04	557
WSC041	RC	573696	7704816	10	-62	331	88	70	64.0	4.0	0.02	0.04	0.65	0.01	1
WSC042	RC	573713	7704786	10	-63	328	124	94	93.0	1.0	0.06	9.48	36.20	1.16	216
WSC043	RC	573729	7704865	10	-62	331	64	61	8.0	16.0	0.02	0.04	0.64	0.01	0
WSC044	RC	573745	7704830	10	-63	330	124	61	64.0	4.0	0.02	0.02	0.52	0.01	0

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSC045	RC	573735	7704798	10	-63	330	124	94	94.0	2.0	0.10	7.19	32.12	0.84	172
WSC045	RC	573735	7704798	10	-63	330	124	61	96.0	4.0	0.02	0.54	2.48	0.03	14
WSC046	RC	573722	7704822	10	-62	330	100	61	48.0	4.0	0.01	0.05	0.69	0.00	1
WSC050	RC	573583	7704655	10	-63	330	107	63	60.0	4.0	0.02	0.07	0.31	0.02	1
WSC051	RC	573594	7704678	10	-63	330	89	63	50.0	2.0	0.02	0.19	0.58	0.01	1
WSC052	RC	573566	7704763	10	-63	330	119	70	64.0	6.0	0.02	0.01	0.49	0.01	0
WSC053	RC	573648	7704795	10	-62	330	80	61	44.0	4.0	0.03	0.66	0.36	0.00	0
WSC054	RC	573667	7704654	11	-66	330	131	69	32.0	8.0	0.02	0.17	0.68	0.01	0
WSC055	RC	573678	7704772	10	-63	330	113	94	89.0	1.0	0.05	4.80	20.70	0.57	124
WSC055	RC	573678	7704772	10	-63	330	113	61	90.0	2.0	0.01	0.41	1.99	0.05	10
WSC058	RC	573417	7704613	10	-63	330	131	55	70.0	3.0	0.08	0.03	2.06	0.10	12
WSC059	RC	573395	7704657	10	-62	330	95	55	52.0	4.0	0.01	0.37	0.71	0.01	68
WSC060	RC	573461	7704649	10	-63	330	118	54	108.0	4.0	0.29	1.96	1.26	0.08	431
WSC066	RC	573667	7704762	10	-64	332	124	62	71.0	7.0	0.17	0.71	3.35	0.20	21
WSC066	RC	573667	7704762	10	-64	332	124	93	75.0	4.0	0.38	10.03	35.33	1.66	215
WSC066	RC	573667	7704762	10	-64	332	124	61	90.0	1.0	0.02	0.08	0.65	0.00	1
WSC067	RC	573675	7704705	11	-59	330	148	64	79.0	6.0	0.04	0.10	1.95	0.04	8
WSC067	RC	573675	7704705	11	-59	330	148	63	95.0	11.0	0.03	0.45	1.61	0.08	7
WSC067	RC	573675	7704705	11	-59	330	148	62	109.0	6.0	0.06	1.46	2.16	0.04	18
WSC067	RC	573675	7704705	11	-59	330	148	93	114.0	1.0	0.12	0.80	11.85	0.53	18
WSC068	RC	573694	7704668	11	-70	330	198	69	60.0	4.0	0.03	0.02	0.75	0.00	0
WSC068	RC	573694	7704668	11	-70	330	198	64	132.0	4.0	0.05	0.00	0.95	0.03	0
WSC068	RC	573694	7704668	11	-70	330	198	62	164.0	4.0	0.02	0.02	0.62	0.07	0
WSC069	RC	573631	7704685	11	-60	330	72	64	39.0	10.0	0.09	0.37	2.10	0.07	8
WSC069	RC	573631	7704685	11	-60	330	72	91	47.0	5.0	0.23	2.10	18.21	0.16	14
WSC070	RC	573731	7704699	11	-75	330	196	69	41.0	6.0	0.06	0.84	4.02	0.02	15
WSC070	RC	573731	7704699	11	-75	330	196	62	166.0	8.0	0.12	1.56	6.13	0.14	26
WSC071	RC	573725	7704650	12	-75	330	234	69	124.0	8.0	0.02	0.23	0.65	0.01	0

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSC072	RC	573516	7704604	11	-65	320	186	60	4.0	4.0	0.01	0.29	0.66	0.01	0
WSC072	RC	573516	7704604	11	-65	320	186	54	164.0	4.0	0.01	0.20	0.41	0.00	26
WSC073	RC	573645	7704627	13	-65	330	198	62	152.0	2.0	0.02	0.22	0.68	0.06	6
WSC074	RC	573756	7704751	11	-75	330	180	61	158.0	3.0	0.02	0.31	0.79	0.03	8
WSC074	RC	573756	7704751	11	-75	330	180	94	160.0	1.0	0.01	7.37	17.75	0.66	136
WSC075	RC	573653	7704743	10	-65	330	114	63	40.0	4.0	0.01	0.27	0.58	0.02	4
WSC075	RC	573653	7704743	10	-65	330	114	62	68.0	12.0	0.11	0.56	0.55	0.04	14
WSC076	RC	573432	7704593	10	-65	320	150	55	81.0	16.0	0.11	0.72	2.80	0.41	17
WSC076	RC	573432	7704593	10	-65	320	150	81	87.0	6.0	0.34	8.31	24.05	0.72	94
WSC078	RC	573384	7704677	10	-65	330	60	59	4.0	4.0	0.01	0.18	0.51	0.01	4
WSC078	RC	573384	7704677	10	-65	330	60	57	20.0	4.0	0.02	0.49	0.54	0.03	19
WSC079	RC	573443	7704655	10	-65	330	88	55	84.0	4.0	0.01	0.40	0.40	0.01	344
WSC080	RC	573772	7704680	12	-70	330	246	69	76.0	4.0	0.03	0.00	0.36	0.01	0
WSC080	RC	573772	7704680	12	-70	330	246	62	205.0	4.0	0.02	0.36	1.68	0.32	11
WSC081	RC	573802	7704728	11	-80	330	247	65	207.0	1.0	0.03	1.79	3.83	0.27	14
WSC083	RC	573533	7704632	10	-80	335	270	54	194.0	1.0	0.02	0.43	0.65	0.01	11
WSC085	RC	573422	7704559	10	-70	330	202	51	176.0	4.0	0.15	2.39	5.70	0.07	7
WSC095	RC	573636	7704775	11	-70	330	120	63	10.0	4.0	0.24	4.06	0.98	0.14	17
WSC095	RC	573636	7704775	11	-70	330	120	62	46.0	8.0	0.07	4.40	3.13	0.12	90
WSC095	RC	573636	7704775	11	-70	330	120	61	73.0	2.0	0.03	0.05	0.92	0.01	0
WSC136	RC	573665	7704694	10	-70	330	120	64	89.0	14.0	0.16	0.02	2.60	0.10	2
WSC136	RC	573665	7704694	10	-70	330	120	63	116.0	4.0	0.03	0.29	1.61	0.09	7
WSD029	DDH	573649	7704722	10	-60	240	105	64	48.0	14.0	0.08	0.85	5.18	0.12	7
WSD029	DDH	573649	7704722	10	-60	240	105	91	57.0	2.0	0.12	0.68	13.32	0.12	7
WSD086	DDH	573809	7704659	12	-65	330	310	69	130.0	3.0	0.06	0.30	1.68	0.00	3
WSD086	DDH	573809	7704659	12	-65	330	310	65	227.0	1.0	0.01	0.17	0.67	0.00	2
WSD086	DDH	573809	7704659	12	-65	330	310	62	244.0	10.0	0.02	0.91	2.52	0.02	38
WSD087	RC_DT	573849	7704677	13	-76	345	409	69	195.0	3.0	0.02	0.02	0.64	0.01	0

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD087	RC_DT	573849	7704677	13	-76	345	409	68	252.5	5.5	0.03	0.82	1.73	0.11	7
WSD087	RC_DT	573849	7704677	13	-76	345	409	67	268.0	2.8	0.62	0.20	2.40	0.16	7
WSD087	RC_DT	573849	7704677	13	-76	345	409	66	300.6	9.5	0.09	0.07	2.64	0.11	7
WSD087	RC_DT	573849	7704677	13	-76	345	409	95	305.8	3.0	0.63	3.81	17.14	0.34	70
WSD088	RC_DT	573810	7704654	13	-75	345	459	69	217.0	6.0	0.03	0.00	1.06	0.00	0
WSD089	DDH	573627	7704726	10	-60	335	123	63	31.0	1.0	0.08	1.65	1.37	0.04	7
WSD089	DDH	573627	7704726	10	-60	335	123	62	58.0	12.0	0.01	0.76	2.94	0.06	16
WSD090	DDH	573650	7704683	12	-60	335	152	64	65.0	14.0	0.10	0.03	2.78	0.11	2
WSD090	DDH	573650	7704683	12	-60	335	152	91	74.0	7.0	0.14	1.89	18.56	0.27	16
WSD090	DDH	573650	7704683	12	-60	335	152	62	113.0	1.0	0.03	0.00	1.65	0.01	1
WSD091	DDH	573446	7704572	10	-60	335	222	60	47.0	5.0	0.03	0.01	0.78	0.00	0
WSD091	DDH	573446	7704572	10	-60	335	222	55	121.0	17.0	0.07	1.98	5.13	0.20	22
WSD091	DDH	573446	7704572	10	-60	335	222	82	130.0	2.0	0.23	6.34	12.35	0.34	38
WSD091	DDH	573446	7704572	10	-60	335	222	54	140.0	11.0	0.21	0.05	3.65	0.18	8
WSD091	DDH	573446	7704572	10	-60	335	222	52	153.0	1.0	0.00	0.00	0.29	0.05	1
WSD091	DDH	573446	7704572	10	-60	335	222	51	179.0	1.0	0.02	0.17	0.35	0.00	2
WSD092	DDH	573874	7704682	14	-75	345	516	69	213.0	5.0	0.03	0.00	0.83	0.03	1
WSD092	DDH	573874	7704682	14	-75	345	516	68	274.0	2.0	0.03	0.60	0.72	0.01	6
WSD092	DDH	573874	7704682	14	-75	345	516	66	353.0	3.0	0.09	1.84	5.55	0.24	36
WSD092	DDH	573874	7704682	14	-75	345	516	95	354.0	2.0	0.19	7.87	16.73	0.55	205
WSD093	DDH	573666	7704607	13	-60	330	319	62	183.0	2.0	0.02	0.03	0.46	0.01	1
WSD095	DDH	573435	7704533	13	-60	330	395	51	223.0	5.0	0.26	0.24	0.62	0.01	4
WSD098	DDH	573874	7704682	13	-65	330	353	67	250.9	0.3	0.02	0.81	1.30	0.01	7
WSD098	DDH	573874	7704682	13	-65	330	353	66	306.0	5.4	0.01	2.28	3.70	0.04	55
WSD098	DDH	573874	7704682	13	-65	330	353	95	309.3	1.7	0.00	14.80	23.63	0.82	459
WSD099	DDH	573464	7704578	11	-70	328	204	60	75.0	10.0	0.03	0.10	0.98	0.00	1
WSD099	DDH	573464	7704578	11	-70	328	204	54	149.0	4.0	0.01	0.04	0.44	0.01	1
WSD100	DDH	573481	7704564	14	-70	330	327	60	151.0	10.0	0.03	0.00	0.80	0.01	0

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD100	DDH	573481	7704564	14	-70	330	327	54	180.0	3.0	0.05	0.14	0.68	0.00	1
WSD100	DDH	573481	7704564	14	-70	330	327	51	249.0	1.0	0.36	0.60	0.97	0.04	5
WSD101	DDH	573497	7704541	17	-71	330	418	51	304.0	1.3	0.07	0.01	0.72	0.00	1
WSD102	DDH	573524	7704613	11	-70	330	246	54	178.5	11.6	0.02	0.73	1.03	0.05	9
WSD102	DDH	573524	7704613	11	-70	330	246	83	180.4	0.4	0.28	8.71	14.75	0.21	66
WSD103	DDH	573421	7704639	10	-70	330	109	55	69.5	8.6	0.03	0.57	0.97	0.02	4
WSD103	DDH	573421	7704639	10	-70	330	109	81	76.0	0.8	0.64	15.55	22.90	0.78	66
WSD103	DDH	573421	7704639	10	-70	330	109	53	94.0	4.1	0.02	0.16	0.36	0.01	8
WSD104	DDH	573551	7704598	14	-70	330	298	60	84.7	8.3	0.02	0.22	0.87	0.00	0
WSD104	DDH	573551	7704598	14	-70	330	298	54	206.1	4.7	0.04	0.66	1.54	0.06	9
WSD104	DDH	573551	7704598	14	-70	330	298	83	208.8	0.2	0.62	13.70	39.60	0.77	146
WSD104	DDH	573551	7704598	14	-70	330	298	84	210.0	0.5	0.87	5.49	11.15	0.84	88
WSD105	DDH	573495	7704597	12	-70	330	277	54	171.9	8.8	1.85	0.25	3.14	0.10	7
WSD105	DDH	573495	7704597	12	-70	330	277	83	176.0	2.6	1.42	0.06	22.33	0.17	8
WSD105	DDH	573495	7704597	12	-70	330	277	84	179.6	1.8	2.27	2.39	24.13	0.38	16
WSD106	DDH	573536	7704564	17	-67	325	300	60	99.0	3.0	0.01	0.05	0.83	0.00	0
WSD106	DDH	573536	7704564	17	-67	325	300	54	202.0	6.4	0.76	0.22	1.62	0.12	14
WSD106	DDH	573536	7704564	17	-67	325	300	83	203.8	0.9	0.26	9.59	19.75	1.60	59
WSD106	DDH	573536	7704564	17	-67	325	300	84	206.0	1.8	0.10	0.49	12.25	1.65	37
WSD107	DDH	573486	7704639	10	-68	320	173	83	135.8	3.8	0.24	16.00	24.10	0.89	246
WSD107	DDH	573486	7704639	10	-68	320	173	54	139.6	1.3	0.03	0.99	0.63	0.08	54
WSD108	DDH	573580	7704653	11	-55	10	150	63	70.7	2.5	0.01	0.05	0.44	0.04	1
WSD108	DDH	573580	7704653	11	-55	10	150	62	103.0	3.8	0.01	0.25	0.68	0.00	4
WSD111	DDH	573533	7704575	16	-73	330	315	54	247.2	3.9	0.12	0.53	1.44	0.01	4
WSD111	DDH	573533	7704575	16	-73	330	315	51	301.2	1.2	0.05	0.52	1.95	0.01	9
WSD112	DDH	573480	7704612	10	-70	330	211	54	141.0	11.3	0.31	0.22	3.37	0.14	8
WSD112	DDH	573480	7704612	10	-70	330	211	83	146.8	6.9	0.52	1.54	16.90	0.60	18
WSD112	DDH	573480	7704612	10	-70	330	211	84	157.0	2.5	1.36	0.12	13.31	0.24	26

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azi	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD112	DDH	573480	7704612	10	-70	330	211	52	165.9	2.4	3.07	0.53	7.16	0.20	33
WSD114	DDH	573756	7704649	11	-70	330	308	69	147.0	2.0	0.03	0.01	0.79	0.00	0
WSD115	DDH	573682	7704655	12	-70	330	305	69	82.0	11.0	0.04	0.05	1.03	0.01	0
WSD115	DDH	573682	7704655	12	-70	330	305	62	187.5	1.5	0.02	0.04	0.38	0.02	2
WSD117	DDH	573813	7704603	14	-63	325	323	69	229.0	3.0	0.03	0.00	0.80	0.00	0
WSD117	DDH	573813	7704603	14	-63	325	323	65	278.0	1.0	0.03	2.30	5.92	0.02	24
WSD118	DDH	573820	7704660	13	-65	325	282	70	129.0	5.0	0.03	0.00	0.45	0.01	0
WSD118	DDH	573820	7704660	13	-65	325	282	69	141.3	2.2	0.03	0.32	0.62	0.00	4
WSD118	DDH	573820	7704660	13	-65	325	282	65	250.0	1.0	0.01	0.11	0.24	0.00	2
WSD118	DDH	573820	7704660	13	-65	325	282	62	262.0	1.0	0.02	0.25	0.68	0.05	90
WSD123	DDH	573726	7704574	14	-60	325	344	62	246.0	1.0	0.05	0.02	0.63	0.02	2
WSD125	RC_DT	573907	7704609	16	-70	330	406	70	303.0	6.0	0.18	1.88	17.20	0.12	13
WSD125	RC_DT	573907	7704609	16	-70	330	406	69	320.0	11.0	0.16	0.90	13.57	0.18	12
WSD130	RC_DT	573959	7704622	19	-66	335	459	69	321.0	3.0	0.02	0.33	0.71	0.02	3
WSD130	RC_DT	573959	7704622	19	-66	335	459	68	345.0	0.7	0.15	0.25	0.96	0.01	4
WSD130	RC_DT	573959	7704622	19	-66	335	459	66	408.0	11.0	0.08	1.70	4.71	0.07	46
WSD130	RC_DT	573959	7704622	19	-66	335	459	95	413.0	1.0	0.21	8.70	15.10	0.17	72
WSD131	DDH	573728	7704572	15	-70	330	431	62	290.0	1.0	6.81	0.01	0.29	0.17	3
WSD132	RC_DT	573731	7704576	14	-65	340	324	62	264.0	3.0	0.01	0.10	0.66	0.01	2
WSD134	DDH	573851	7704689	14	-65	315	310	67	215.0	6.5	0.03	1.00	2.92	0.11	8
WSD135	DDH	573900	7704608	17	-64	320	385	69	304.0	10.0	0.06	0.21	4.12	0.11	5
WSD138	DDH	573728	7704572	14	-67	341	364	62	272.0	16.8	0.23	1.08	6.47	0.24	15
WSD142	DDH	574020	7704640	20	-65	330	501	68	339.0	6.0	0.19	0.93	2.07	0.04	14
WSD143	DDH	573815	7704605	14	-66	310	421	62	303.0	7.0	0.07	1.70	5.68	0.09	16

Cu Domain Intercepts

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
16VSCD007	DDH	574077	7704643	19	-70	330	583	30	429.5	30.6	1.01	0.01	1.28	0.09	5
16VSCD007	DDH	574077	7704643	19	-70	330	583	29	483.8	1.0	1.58	0.01	0.09	0.03	0
16VSCD008	DDH	573877	7704540	15	-70	333	517	23	457.8	18.7	2.42	0.00	0.00	0.01	1
16VSCD009	DDH	573601	7704547	18	-64	335	328	15	268.0	5.0	0.56	2.16	14.52	0.23	23
ACLD003	DDH	576789	7705689	10	-55	170	251	27	173.8	5.4	0.56	0.02	1.17		
ACLR005	RC	576358	7705406	8	-60	170	80	27	72.0	7.0	1.14	0.12	0.14	0.01	2
BBD001	RC_DT	579437	7706645	12	-61	169	327	27	299.0	9.0	0.46	0.10	0.39	0.08	7
BBD002	RC_DT	579357	7706630	12	-61	170	271	27	238.0	14.5	1.30	0.71	2.08	0.03	5
BBD003	DDH	579516	7706654	12	-52	173	312	27	271.0	7.5	0.61	1.94	6.23	0.04	6
BBD006	RC_DT	579160	7706419	12	-60	340	244	27	201.0	5.0	0.53	0.01	0.03	0.01	2
BBD007	RC_DT	579082	7706430	12	-60	344	205	27	124.0	5.0	0.79	0.51	3.06	0.02	5
BBD010	DDH	579213	7706400	12	-60	0	238	27	210.0	6.0	0.53	0.00	0.02	0.01	1
BBD016	NR	579476	7706630	13	-60	170	363	27	307.0	3.0	1.13	0.01	0.05	0.01	4
BBD023	DDH	579550	7706602	13	-60	181	295	27	246.5	4.5	0.75	1.79	4.32	0.03	5
BBRC007	RC	579448	7706566	13	-60	170	130	27	103.0	5.0	0.28	4.54	12.45	0.33	13
NUD0002	DDH	573731	7704642	12	-50	330	225	21	183.0	4.0	3.41	0.05	0.31	0.25	39
NUD0009	DDH	573477	7704585	11	-60	330	217	12	134.0	13.4	0.92	0.03	2.83	0.17	11
NUD0011	DDH	573491	7704559	15	-75	330	281	12	194.0	12.3	2.70	1.11	3.14	0.37	12
NUD0011	DDH	573491	7704559	15	-75	330	281	36	195.1	2.8	10.70	0.01	0.56	0.28	39
NUD0011	DDH	573491	7704559	15	-75	330	281	13	209.8	1.6	0.63	0.06	0.22	0.45	46
NUD0012	DDH	573749	7704611	13	-70	330	293	27	188.0	2.0	0.22	0.01	0.01		0
NUD0012	DDH	573749	7704611	13	-70	330	293	25	209.0	4.0	0.69	0.00	0.02		0
NUD0013	DDH	573593	7704558	20	-75	330	269	12	244.4	0.2	0.65	15.25	19.25	1.42	225
NUD0016	DDH	573453	7704628	10	-60	330	125	14	96.3	0.8	0.54	3.70	28.80	0.53	43
NUD0016	DDH	573453	7704628	10	-60	330	125	12	101.0	8.0	0.39	13.77	21.58	1.17	205
NUD0018	DDH	573452	7704732	10	-65	150	229	12	183.3	26.8	0.56	1.02	11.98	0.58	27
NUD0020	DDH	573442	7704780	10	-65	150	334	15	321.2	7.8	1.43	0.00	0.02		0

ASX Announcement | ASX Code: ANX | 12 September 2022

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
NUD0021	DDH	573375	7704769	10	-60	150	300	11	252.6	14.2	1.50	4.18	6.42	0.10	32
NUD0022	DDH	573352	7704740	10	-65	150	294	11	281.6	5.8	0.41	0.01	0.18		
NUD0027	DDH	573686	7704724	11	-55	330	145	21	106.7	1.4	0.44	0.26	1.10		0
NUD0034	DDH	573647	7704691	11	-60	330	148	25	67.0	0.8	0.21	0.81	25.15		25
SCD001	DDH	573442	7704597	10	-61	334	147	14	95.5	3.0	0.27	12.12	30.98	0.99	160
SCD002	DDH	573466	7704613	10	-62	332	150	12	127.9	2.4	0.40	13.75	26.93	1.47	161
SCD005	DDH	573697	7704765	11	-65	333	120	21	108.0	2.9	0.76	6.28	50.04	4.86	333
SCD007	DDH	573471	7704576	12	-67	333	193	12	153.1	15.6	1.94	0.24	8.08	0.20	18
SCD007	DDH	573471	7704576	12	-67	333	193	36	159.4	0.7	10.20	1.25	9.87	0.72	60
SCD007	DDH	573471	7704576	12	-67	333	193	13	176.0	1.0	0.18	0.06	1.82	0.02	3
SCD012	DDH	573647	7704729	11	-63	333	103	25	50.0	4.0	0.19	0.06	14.48	0.53	8
SCD013	DDH	573424	7704644	10	-63	330	114	12	84.5	1.5	0.57	10.78	17.27	2.73	212
SCD015	DDH	573452	7704551	13	-72	335	234	11	217.2	8.3	0.66	0.41	1.00	0.03	13
SCD018	DDH	573691	7704540	13	-68	333	298	23	241.1	8.0	0.50	0.00	0.01	0.04	3
SCKD040	DDH	573666	7704597	14	-75	329	392	28	121.3	3.0	0.51	0.00	0.01		
SCR001	RC	573630	7704764	11	-59	330	75	25	11.0	4.0	0.17	3.15	1.06		26
WBD032	RC_DT	577341	7706126	9	-60	160	282	27	184.0	5.0	0.69	0.00	0.04	0.02	2
WBRC012	RC	577344	7706046	10	-65	160	197	27	144.0	4.0	0.98	0.01	0.02	0.32	3
WBRC013	RC	577444	7705959	10	-65	340	197	27	176.0	6.0	1.04	0.07	0.36	0.01	6
WBRC022	RC	577586	7706184	10	-70	160	200	27	158.0	3.0	0.73	0.21	0.64	0.02	10
WSC005	RC	573633	7704646	12	-60	330	80	25	68.0	4.0	0.39	0.01	0.09	0.06	1
WSC006	RC	573613	7704680	10	-60	330	80	25	27.0	4.0	0.98	0.07	0.41	0.16	38
WSC006	RC	573613	7704680	10	-60	330	80	23	73.0	1.0	0.77	0.01	0.36	0.13	9
WSC010	RC	573447	7704602	10	-60	330	123	14	97.0	4.0	0.22	5.13	9.51	0.28	52
WSC010	RC	573447	7704602	10	-60	330	123	12	109.0	9.0	1.23	11.26	25.42	1.04	406
WSC011	RC	573417	7704652	10	-60	330	99	12	65.0	7.0	0.90	14.77	25.80	2.20	2221
WSC026	RC	573639	7704714	10	-60	240	69	25	46.0	2.0	0.23	11.98	20.72	0.20	63
WSC054	RC	573667	7704654	11	-66	330	131	25	105.0	4.0	0.34	0.01	0.09	0.02	1

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSC060	RC	573461	7704649	10	-63	330	118	12	111.0	1.0	1.06	4.54	1.88	0.03	705
WSC066	RC	573667	7704762	10	-64	332	124	21	73.0	6.0	0.40	6.83	24.29	1.24	154
WSC067	RC	573675	7704705	11	-59	330	148	21	115.0	1.0	0.28	1.83	0.65	0.03	5
WSC068	RC	573694	7704668	11	-70	330	198	27	104.0	4.0	0.41	0.01	0.03	0.03	1
WSC069	RC	573631	7704685	11	-60	330	72	25	47.0	3.0	0.29	3.36	23.17	0.19	21
WSC070	RC	573731	7704699	11	-75	330	196	27	140.0	4.0	0.26	0.01	0.05	0.02	1
WSC070	RC	573731	7704699	11	-75	330	196	21	170.0	1.0	0.41	0.06	1.73	0.16	15
WSC071	RC	573725	7704650	12	-75	330	234	27	164.0	4.0	0.25	0.00	0.01	0.02	0
WSC071	RC	573725	7704650	12	-75	330	234	21	203.0	2.0	0.60	0.02	0.11	0.12	9
WSC073	RC	573645	7704627	13	-65	330	198	27	76.0	4.0	0.24	0.03	0.06	0.01	0
WSC073	RC	573645	7704627	13	-65	330	198	25	103.0	14.0	2.62	0.01	0.14	0.14	3
WSC073	RC	573645	7704627	13	-65	330	198	23	140.0	5.0	0.92	0.03	0.04	0.59	8
WSC075	RC	573653	7704743	10	-65	330	114	21	72.0	4.0	0.28	0.26	0.26	0.04	2
WSC076	RC	573432	7704593	10	-65	320	150	14	89.0	6.0	0.37	5.16	18.38	1.01	73
WSC080	RC	573772	7704680	12	-70	330	246	27	177.0	3.0	1.06	0.03	0.10	0.08	3
WSC095	RC	573636	7704775	11	-70	330	120	25	10.0	3.0	0.30	4.40	1.02	0.13	14
WSC136	RC	573665	7704694	10	-70	330	120	25	101.0	2.0	0.27	0.02	1.99	0.10	3
WSD086	DDH	573809	7704659	12	-65	330	310	27	218.0	4.0	1.10	0.00	0.02	0.01	3
WSD087	RC_DT	573849	7704677	13	-76	345	409	29	262.6	7.4	0.87	0.02	0.55	0.17	7
WSD087	RC_DT	573849	7704677	13	-76	345	409	27	304.3	4.5	0.55	2.54	13.73	0.37	55
WSD088	RC_DT	573810	7704654	13	-75	345	459	29	271.0	3.0	1.08	0.00	0.02	0.01	1
WSD088	RC_DT	573810	7704654	13	-75	345	459	27	277.0	17.3	1.24	0.00	0.02	0.10	1
WSD090	DDH	573650	7704683	12	-60	335	152	25	80.0	3.0	0.35	0.09	5.80	0.21	5
WSD091	DDH	573446	7704572	10	-60	335	222	12	148.0	3.0	0.69	0.03	6.14	0.40	18
WSD092	DDH	573874	7704682	14	-75	345	516	30	283.0	10.0	0.99	0.00	0.01	0.03	2
WSD092	DDH	573874	7704682	14	-75	345	516	29	302.0	10.0	0.51	0.00	0.01	0.01	1
WSD092	DDH	573874	7704682	14	-75	345	516	27	340.0	9.0	2.67	0.09	0.39	0.21	9
WSD093	DDH	573666	7704607	13	-60	330	319	28	104.0	1.0	0.22	0.00	0.01	0.00	0

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD093	DDH	573666	7704607	13	-60	330	319	27	113.0	6.0	1.73	0.00	0.01	0.01	0
WSD093	DDH	573666	7704607	13	-60	330	319	23	171.0	6.0	1.28	0.02	0.08	0.33	5
WSD095	DDH	573435	7704533	13	-60	330	395	11	226.0	6.0	0.33	0.12	0.27	0.01	4
WSD097	DDH	573655	7704491	16	-75	355	541	27	274.0	7.9	0.23	0.00	0.00	0.00	0
WSD097	DDH	573655	7704491	16	-75	355	541	15	364.0	1.0	1.08	0.00	0.01	0.01	2
WSD099	DDH	573464	7704578	11	-70	328	204	12	161.3	2.7	0.52	0.02	0.07	0.08	2
WSD099	DDH	573464	7704578	11	-70	328	204	36	164.0	3.8	15.68	0.02	0.15	0.46	20
WSD099	DDH	573464	7704578	11	-70	328	204	13	183.0	3.0	0.75	0.05	0.05	0.02	5
WSD100	DDH	573481	7704564	14	-70	330	327	12	190.3	19.3	2.83	0.01	0.09	0.13	7
WSD100	DDH	573481	7704564	14	-70	330	327	36	196.7	0.8	8.17	0.01	0.06	0.04	10
WSD100	DDH	573481	7704564	14	-70	330	327	11	243.0	4.0	0.63	0.02	0.04	0.02	3
WSD101	DDH	573497	7704541	17	-71	330	418	19	42.5	6.1	0.59	0.00	0.00	0.00	1
WSD101	DDH	573497	7704541	17	-71	330	418	18	195.4	8.6	0.76	0.00	0.01	0.01	2
WSD101	DDH	573497	7704541	17	-71	330	418	12	228.0	11.9	0.42	0.00	0.03	0.01	1
WSD101	DDH	573497	7704541	17	-71	330	418	11	292.8	4.2	2.18	0.01	0.07	0.01	12
WSD104	DDH	573551	7704598	14	-70	330	298	15	208.8	2.2	0.31	3.46	7.36	0.35	45
WSD105	DDH	573495	7704597	12	-70	330	277	12	176.0	9.0	2.62	0.52	12.25	0.20	11
WSD106	DDH	573536	7704564	17	-67	325	300	15	208.4	3.2	2.21	0.15	1.94	0.28	30
WSD107	DDH	573486	7704639	10	-68	320	173	12	139.0	0.6	0.44	18.90	28.20	0.94	379
WSD108	DDH	573580	7704653	11	-55	10	150	23	88.8	2.4	0.33	0.01	0.03	0.06	9
WSD111	DDH	573533	7704575	16	-73	330	315	15	229.0	1.2	0.23	0.00	0.27	0.01	1
WSD112	DDH	573480	7704612	10	-70	330	211	12	150.0	8.7	1.07	0.22	12.35	0.43	18
WSD112	DDH	573480	7704612	10	-70	330	211	13	165.9	3.6	2.10	0.35	4.76	0.13	23
WSD113	DDH	573826	7704614	11	-70	330	442	27	312.0	7.8	1.67	0.00	0.01	0.10	1
WSD114	DDH	573756	7704649	11	-70	330	308	27	188.6	13.0	1.10	0.00	0.01	0.02	1
WSD115	DDH	573682	7704655	12	-70	330	305	27	101.8	1.3	1.66	0.02	0.03	0.19	4
WSD115	DDH	573682	7704655	12	-70	330	305	25	153.0	2.0	0.59	0.00	0.01	0.01	1
WSD115	DDH	573682	7704655	12	-70	330	305	23	179.0	1.1	0.47	0.01	0.02	0.06	4

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD116	DDH	573832	7704616	14	-70	285	463	27	339.0	12.0	1.94	0.01	0.01	0.03	2
WSD116	DDH	573832	7704616	14	-70	285	463	23	353.3	17.7	2.56	0.01	0.02	0.09	7
WSD117	DDH	573813	7704603	14	-63	325	323	27	263.0	4.8	1.06	0.01	0.03	0.13	1
WSD118	DDH	573820	7704660	13	-65	325	282	27	227.2	5.8	1.57	0.01	0.05	0.05	3
WSD119	DDH	573844	7704546	15	-70	330	427	27	397.0	5.0	1.61	0.00	0.01	0.02	1
WSD122	DDH	573845	7704549	15	-63	325	466	29	332.0	11.9	2.07	0.01	0.03	0.01	1
WSD122	DDH	573845	7704549	15	-63	325	466	23	399.0	10.0	0.54	0.01	0.04	0.01	1
WSD123	DDH	573726	7704574	14	-60	325	344	27	193.0	2.0	0.36	0.00	0.01	0.03	2
WSD123	DDH	573726	7704574	14	-60	325	344	23	244.0	1.0	0.25	0.00	0.02	0.00	0
WSD124	DDH	573813	7704600	14	-70	330	357	27	307.0	7.0	1.61	0.00	0.02	0.02	1
WSD125	RC_DT	573907	7704609	16	-70	330	406	29	344.0	3.0	0.26	0.00	0.01	0.00	0
WSD125	RC_DT	573907	7704609	16	-70	330	406	27	371.0	6.0	4.42	0.00	0.02	0.04	2
WSD128	DDH	573812	7704506	15	-65	333	448	23	410.0	22.0	3.43	0.01	0.07	0.06	5
WSD130	RC_DT	573959	7704622	19	-66	335	459	30	345.7	15.3	1.68	0.00	0.02	0.04	4
WSD130	RC_DT	573959	7704622	19	-66	335	459	29	385.0	1.0	0.21	0.00	0.01	0.00	0
WSD130	RC_DT	573959	7704622	19	-66	335	459	27	410.0	4.0	0.15	3.06	9.38	0.18	28
WSD131	DDH	573728	7704572	15	-70	330	431	27	254.0	5.0	2.00	0.00	0.01	0.00	0
WSD131	DDH	573728	7704572	15	-70	330	431	23	281.2	25.8	1.51	0.01	0.07	0.04	1
WSD132	RC_DT	573731	7704576	14	-65	340	324	27	204.0	7.0	0.49	0.00	0.01	0.01	1
WSD132	RC_DT	573731	7704576	14	-65	340	324	23	256.0	6.0	0.66	0.03	0.12	0.41	4
WSD135	DDH	573900	7704608	17	-64	320	385	29	322.9	8.2	0.60	0.00	0.01	0.00	0
WSD135	DDH	573900	7704608	17	-64	320	385	27	347.8	19.0	3.25	0.00	0.04	0.04	2
WSD136	DDH	573843	7704545	16	-65	335	437	27	389.1	2.9	0.92	0.00	0.02	0.05	1
WSD136	DDH	573843	7704545	16	-65	335	437	23	406.0	1.0	0.36	0.23	0.62	0.04	5
WSD138	DDH	573728	7704572	14	-67	341	364	27	254.0	11.9	0.49	0.00	0.02	0.01	1
WSD138	DDH	573728	7704572	14	-67	341	364	23	276.0	5.0	0.59	0.24	6.11	0.14	10
WSD139	DDH	573802	7704602	15	-72	306	394	27	290.4	5.1	2.78	0.00	0.02	0.00	1
WSD139	DDH	573802	7704602	15	-72	306	394	23	351.0	9.0	0.62	0.00	0.02	0.01	1

Hole ID	Hole Type	MGA East	MGA North	RL	Dip	MGA Azimuth	Hole Depth	Domain	From (m)	Interval (m)	Cu %	Pb %	Zn %	Au ppm	Ag ppm
WSD140	DDH	573899	7704609	16	-63	309	403	29	331.0	12.0	0.57	0.00	0.02	0.06	0
WSD140	DDH	573899	7704609	16	-63	309	403	27	347.0	11.0	0.22	0.00	0.01	0.00	0
WSD142	DDH	574020	7704640	20	-65	330	501	30	337.0	3.0	1.22	0.15	0.39	0.04	10
WSD143	DDH	573815	7704605	14	-66	310	421	27	279.0	5.0	0.84	0.00	0.02	0.03	1
WSD144	DDH	573810	7704507	15	-65	325	491	23	405.0	5.0	1.45	0.00	0.01	0.01	1
WSD145	DDH	574022	7704637	21	-70	325	553	30	393.7	5.4	0.82	0.00	0.04	0.03	2
WSD145	DDH	574022	7704637	21	-70	325	553	29	438.0	2.6	0.37	0.01	0.03	0.01	1
WSD145	DDH	574022	7704637	21	-70	325	553	27	458.0	13.3	0.98	0.00	0.01	0.01	0
WSD146	DDH	573959	7704622	19	-69	328	500	31	340.0	8.0	0.36	0.00	0.02	0.01	1
WSD146	DDH	573959	7704622	19	-69	328	500	29	423.5	1.1	1.35	0.00	0.02	0.00	0
WSD146	DDH	573959	7704622	19	-69	328	500	27	444.1	5.9	1.44	0.00	0.01	0.02	1
WSD146	DDH	573959	7704622	19	-69	328	500	23	464.0	2.1	2.50	0.03	0.22	0.50	10

APPENDIX 3: JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The deposit was sampled with a combination of reverse circulation (RC) and diamond (DD) drill holes completed on 15–40 m spacing across the deposit to a maximum vertical depth of 475 m. The RC drill holes were typically sampled via standard adjustable cyclone and riffle splitter from the recovered sample. Diamond drill core was sampled using standard cut half-core. Standard RC drilling completed by Straits Resources Ltd (Straits) and Venturex Resources Ltd (Venturex) since 2004 produced 1 m RC drill samples either split at the rig using a riffle splitter, or collected by inserting a PVC spear diagonally through the sample bag to produce samples of approximately 3 kg for geochemical analysis. Historical diamond drilling was completed to industry standard using predominantly NQ sized core. Diamond core was halved, pulverised with a sub-sample analysed typically using a mixed acid digest with AAS finish. Recent diamond drilling was orientated, aligned, and cut on geologically determined intervals (0.2–2 m). Samples were weighed, dried, crushed and pulverised (total prep) to produce a pulp sub-sample for analysis typically by 4-acid digest with an ICP/OES, ICP/MS-AES or FA/AAS (gold) finish.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Diamond drilling was the main technique accounting for over 80% of the samples used to inform the estimate. Core diameter was typically NQ, with some BQ (historical) and HQ diameter core also produced using a variety of rig types. Drill core was typically oriented by the drillers placing orientation marks on the bottom of the core at the end or start of every run. RC drilling typically used face sampling hammers with diameters between 5.25" and 6" after 2004. A total of 244 RC and 211 diamond holes (28 with RC pre-collars) have been completed across the Salt Creek tenements. Of these, 109 diamond and 63 RC holes were used to inform the interpretation.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drill core recovery was recorded by all operators as a percentage of measured recovered core versus drilled distance. Available drill core recoveries for mineralised zones average 97% and do not appear to bear a relationship to grade. RC sample recoveries were reportedly estimated, but appear to not have been recorded. The cyclone and splitter were reportedly routinely inspected and cleaned during the drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Diamond drill core has all been qualitatively logged with core photographs recorded routinely since 2004. The RC drill holes were qualitatively logged. Logging was at an appropriate detailed quantitative standard to support future geological, resource, reserve estimations and subsequent feasibility studies. All holes were logged in full. Re-logging of previous diamond drill holes to gain additional structural data was carried out in 2016.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core was sawn with a diamond saw and half-core samples (quarter-core in metallurgical holes) were typically taken for assay. Between 2005 and 2008 RC samples were typically collected using a PVC spear. Samples were either collected as 4m composite spear samples or 1m samples in areas of visible mineralisation. Where 4m composite samples exceeded a certain threshold, the composite was re-sampled as 1m spears samples. After 2009 RC samples were typically collected at 1m intervals with sub-sampling by means of a splitter. The samples were prepared using industry standard practice involving weighing, oven drying, pulverisation of the entire sample (total prep) to a grind size of 85% passing 75 µm. The results generally showed good repeatability with a small number of outliers. The sample sizes were considered appropriate given the relatively fine-grained sulphide mineralisation which was not nuggetty in nature, the sampling methodology and the percent assay value ranges involved.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc., the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Various operators used analytical techniques involving a 4-acid digest multi-element suite with ICP/MS finish (30 g FA/AAS for precious metals). The acids used were typically hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for the dissolution of most silica-based samples. The method approached total dissolution of most minerals. Combustion furnace was at times used to assay for total sulphur. No geophysical tools were used to determine any element concentrations reported. A total of 746 Standard assays have been completed. No significant bias was identified.

Criteria	JORC Code Explanation	Commentary
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Field duplicates were collected between 2004 and 2009 with 812 samples collected
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Verification procedures for previous operators have not been documented. After 2010, significant intersections were reportedly viewed by the Exploration Manager and/or Managing Director. Significant intersections were reportedly also verified by portable XRF data collected in the field and cross-checked against the final assays when received. Primary data collection methods prior to 2010 have not been documented. Since 2010, data was reportedly recorded using a set of standard Excel templates on a data logger and uploaded to a Notebook computer. The data were sent to Perth office for verification and compilation into an SQL database by the in-house database administrator. Full copies were stored offsite. Full database verification of all historical information was reportedly completed in 2009. DataShed was used for drill hole data storage and validation. The drill hole database was migrated to an updated version of DataShed[™] in 2021. Original assay files were re-loaded as part of this process Except for below detection limited (BDL) assays, no adjustments have been made to assay data. BDLs are entered as negative values.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All hole collar coordinates were reportedly checked by the previous operator using DGPS, with all co-ordinates and elevation data considered reliable. Downhole surveys were performed on all holes. Historical operators initially used acid tubes for surveys but switched to down-the-hole single shot Eastman cameras. From 2004 onwards single shots and gyro were primarily used. The grid system used for the location of all drill holes is MGA_GDA94, Zone 50. The conversion to local grid consists of 7704600N, 573300E ->10,000N, 5,000E and Rotation of -30 deg. The area is flat lying at an elevation of approximately 10 m above mean sea level. Topographic control is provided by combination of external survey control and DGPS readings. 2022 Anax drill holes were set up using GPS and downhole surveys were recorded using an Axis Gyro tool.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill sections at Salt Creek are typically spaced 15 m to 20 m apart, with holes are spaced 15 to 20m apart on section near surface, increasing to >50 m at depth. The current spacing was adequate to assume geological and grade continuity of the mineralised domain. No compositing has been applied to the exploration results.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The Salt Creek drilling was orientated predominantly to the northwest, near perpendicular to the mineralised trend. Given the stratigraphic nature of the mineralising system, no orientation-based sampling bias has been identified in the data.
Sample security	• The measures taken to ensure sample security.	 Protocols prior to 2010 have not been documented. Independent audits by previous operators in 2010 reportedly concluded that the historical sampling protocols were adequate. Procedures employed by the previous operator after 2009 typically included storage in a secure facility on site, before being collected by a commercial freight operator. The samples were reportedly delivered directly to a laboratory in Perth. An online tracking system was reportedly used. Anax drilling was supervised by an independent geological consultant. Diamond core was logged and photographed, before being sent to commercial laboratories in Perth using commercial freight operators.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Independent audits of the sampling techniques and data were reportedly completed as part of previous feasibility studies in 2008 by Straits and 2011 (Venturex). The studies were reported to be comprehensive and covered all industry standard issues. There did not appear to be any significant risk in accepting the data as valid. The drilling database inherited from the previous operator was imported into a relational SQL Server database using DataShed™ (industry standard drill hole database management software) by external consultancy, Mitchell River Group in 2021. Original assay files where available were obtained and reimported as part of the database migration.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Salt Creek is located within granted Mining Lease M47/323. The tenement is currently in good standing. Anax has an 80% interest in the tenement and Develop (ASX:DVP) holds the remaining 20% interest. Develop is free carried through to a decision to mine. The tenement occurs within the granted Ngarluma Native Title Claim and is subject to a community assistance agreement with the Ngarluma Aboriginal Corporation. The Whim Creek Project is currently the subject of an Environmental Protection Notice (EPN). Anax has made substantial progress in addressing the requirements of the EPN since acquiring its interest. The EPN is not expected to be an impediment to obtaining a licence to operate. The tenement is subject to standard government royalties. The following additional royalties apply: M47/323 and M47/324 - 2.5% of net profits on the sale of minerals exceeding 1 Mt. 1.0% NSR on Anax's share of production
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• Previous exploration has been conducted within the tenement package by numerous historical exploration companies including Australian Inland Exploration, Texas Gulf Australia, Straits and Venturex, mainly since the early 1970s.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Salt Creek copper-zinc-lead-silver(-gold) deposit consists of two mineralised zones hosted towards the top of a sequence of volcaniclastic siltstones overlain by basaltic andesite flows and tuffs. The deposit is closely associated with a thick underlying rhyolitic pile containing a well-developed coarse pyroclastic unit towards the top within the north–easterly trending Whim Creek belt in the western Pilbara Craton. The deposit is an example of an Archaean volcanogenic massive sulphide (VMS) style deposit that has undergone post-mineralisation deformation and mineralisation remobilisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the 	 Detailed drill hole data have been previously periodically publicly released by previous operators, including Venturex and Straits. A full list of summary intersections of historical drilling has been included. All relevant drill hole information has been displayed, including collar and survey information.

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	 All reported assays have been length weighted. No top-cuts were applied to exploration intersections and results quoted. High-grade massive sulphide intervals internal to broader zones of sulphide mineralisation were typically reported as included intervals. No data aggregation was applied.
	 aggregation should be stored und some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The inclined drill holes intercepted the mineralisation at an oblique angle. The true widths of historical drill holes reported are typically 80% to 90% of reported intervals.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Included in above announcement documentation
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Included in above announcement documentation
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• Not Applicable.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• The potential for depth extensions has been identified and may be investigated through future diamond drilling.

METALS LIMITED

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	• Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The original database was compiled by Straits and Venturex and maintained as a SQL Server database. The data was imported by Anax's database consultants into a relational SQL Server database using DataShed™ (industry standard drill hole database management software). The data are constantly audited and any discrepancies checked by Anax personnel before being updated in the database.
	Data validation procedures used.	 Normal data validation checks were completed on import to the SQL database. Data has not been checked back to WAMEX reports. All original assay files have been obtained and have been imported into the database.
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	• Andrew McDonald (Project Manager at Anax and Competent Person), Wendy Beets (Anax Exploration Manager) and Geoff Collis (Anax Geological Consultant) have visited the site numerous times since 2020.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The Whim Creek volcanics crop out as a continuous arcuate belt some 85 km long and 5-10 km wide, that extends around the southern, eastern and northern flanks of the ovoid Caines Well batholith. The western limit of the southern arm of the volcanic arc is blanketed by Late Archaean rocks, although it may extend further west and overly the Sholl belt. The northern flank is wedged out between the Caines Well batholith and the Sholl Fault. All stratabound VMS deposits in the Whim Creek belt (i.e., Mons Cupri, Salt Creek and Whim Creek) are at the same or equivalent stratigraphic level within the Mons Cupri Volcanics or Rushall Slate and their distribution indicates widespread volcanogenic hydrothermal activity during accumulation of the volcanic pile. The Salt Creek prospect, located 17km northwest of the Whim Creek processing facility, occurs on the northern side of the Caines Well Granitic Complex. The prospect was discovered in the mid-1970s by Texas Gulf as a small gossan. The known mineralisation is hosted in tuffaceous siltstones and is overlain by andesite flows and tuffs. Massive sulphides at Salt Creek occur as two separate lenses approximately 200 m apart along strike. The western lens is interpreted to extend to a depth of approximately 250 m below surface, while the eastern lens extends to at least 420 m below surface and remains open at depth.

Criteria	JORC Code explanation	Commentary
		 These deposits are interpreted to form in close association with submarine volcanism through the circulation of hydrothermal fluids and subsequent exhalation of sulphide mineralisation on the ancient seafloor similar to present-day black smokers. VMS mineralisation typically forms concordant or strata-bound lenses of polymetallic semi-massive to massive sulphides, which are underlain by discordant feeder-type vein-systems and associated alteration. The mineralised domain interpretations were based upon a combination of geology, mineralisation (sulphide) logging, supporting multi-element lithochemistry (where available) and a lower cut-off grade of 0.4% Cu (for the lower-grade boundary of the Cu zones) and 1% Zn (for the lower-grade boundary of the Zn zones). Distinct internal high-grade massive sulphide Zn zones were also modelled correlating to an approximate 8-10% Zn cut-off. Domains were constrained by drilling along strike and extrapolated down plunge roughly to approximately 50m where appropriate. Domains were extrapolated below the deepest drill intercept based on the geological model and interpreted continuity, although the deeper blocks with limited drill support were not necessarily classified according to the JORC (2012) Code. Oxidation surfaces were modelled using drillhole logs and supporting multi-element lithochemistry (in particular S, where available). The confidence in the geological interpretation is considered robust. No alternative interpretations have been considered at this stage. Grade wireframes correlate extremely well with the logged geology, in particular the observed zoning sulphides present (chalcopyrite/chalcocite, pyrite, sphalerite and galena). The key factor affecting continuity is the presence of the zoned sulphide rich
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The combined modelled mineralized domains are present over a total dimension of 500m (east-west), and 500m (vertically) in numerous lenses up to 200-300m long down-plunge and ranging between 10m and -490m RL (AMSL).
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	 Grade estimation using Ordinary Kriging (OK) was completed using Geovia Surpac[™] software for Cu, Pb, Zn, Au, Ag, Fe and S. Drill spacing typically ranges from 20-30m x 20-30m with some wider spaced fringe areas (at depth) up to 100m. Drill hole samples were flagged with wire framed domain codes. Sample data was composited for elements Cu, Pb, Zn, Au, Ag, Fe and S to 1m using a best fit method. Since all holes were typically sampled on 1m intervals, there were only a very small number of residuals in the diamond core holes that were sampled to geological contacts. A combination of methods, including grade histograms, log probability plots and statistical tools, were used to ascertain whether top cutting was required. Influences

Criteria	JORC Code explanation	Commentary
	 Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 of extreme sample distribution outliers are reduced by top-cutting on a domain basis. Based on this statistical analysis of the data population, top-cuts were only applied to Cu for Domains 12 (10.0% Cu) and 21 (4.0% Cu), Pb for Domain 69 (2.5% Pb), Zn for Domains 51 (6.0% Zn), 62 (12.0% Zn), and 69 (5.0% Zn), plus Au for Domain 55 (1.5 ppm Au) and plus Ag for Domain 54 (150 ppm Ag), 55 (400 ppm Ag), 61 (40 ppm Ag), 62 (250 ppm Ag) and 81 (800 ppm Ag). No top-cuts were required for Fe or S - or for the internal high-grade domains. Directional variograms were modelled by domain using traditional variograms. Nugget values are low to moderate (around 10-20%) and structure ranges up to 50-80m. Domains with more limited samples were assigned variography of geologically similar, adjacent domains. Block model was constructed with parent blocks of 10m (E) by 8m (N) by 10m (RL) and sub-blocked to 0.625m (E) by 0.5m (N) by 0.625m (RL). All estimation was completed to the parent cell size. Three estimation passes were used. The first pass had a limit of 45m, the second pass 90m and the third pass searching a large distance to fill the blocks within the wire framed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole of 4 samples. Search ellipse sizes were based primarily on a combination of the variography and the trends of the wire framed mineralized zones. Hard boundaries were applied between all estimation domains. Validation of the block model included a volumetric comparison of the resource wireframes to the block model grades to the declustered input composite grades plus swath plot comparison by easting, northing and elevation. Visual comparisons of input comparison by bedy model arede were also completed
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnes have been estimated on a dry basis.
Cut-off parametres	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 Cut-off grades primarily coincide with sulphide zonation, in particular Cu-rich (chalcopyrite) and Zn-rich (sphalerite) dominant zones. Cut-off grades were also selected with consideration of expected mining cut-off grades.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parametres when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the 	 Based on the orientations, thicknesses and depths to which the mineralised lodes have been modelled, plus their estimated grades for Cu and Zn, the initial mining method is expected to be open pit mining. The grades and morphology of the mineralised lenses do appear to be potentially amenable to underground mining methods, depending on whether extensions can be found at further depth.

Criteria	JORC Code explanation	Commentary
	hasis of the mining assumptions made	
Metallurgical factors or assumptions	 The basis of the mining assumptions made. The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parametres made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	• Polymetallic flotation test work by Texasgulf Australia Ltd and Straits Resources Ltd was completed on representative material from Zn dominant and Cu dominant domains. Test work demonstrated potentially economic recoveries and concentrate grades could be obtained through standard sequential polymetallic flotation.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Baseline flora and fauna surveys have been completed at Salt Creek. No significant environmental impediments have been identified. No waste rock characterisation has been completed to date, but multi element data suggests sufficient NAF material would be available to encapsulate any PAF material that may be produced through open pit mining.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A total of 4,853 density measurements have been completed across the Salt Creek project area with 3,166 within the immediate Salt Creek deposit area – and 637 from within the modelled mineralised domains. The vast majority are by Archimedes immersion methods on a mix of whole, half and quarter core. Statistical analysis included comparison by mineralised domains vs. waste, rock type, oxidation, depth below surface and potential correlation with multi-element assays (including sulphide zone elements Fe, Cu, Zn, Pb and S – and combinations thereof). The result for the combined Cu+Zn+Pb+Fe regression was determined to be most appropriate for the mineralised domains. Bulk densities have been calculated into the mineralised zones of the block model using regressions as follows: CuPbZnFe < 55%: ((CuPbZnFe)³ x (-0.0002086)) + ((CuPbZnFe)² x (0.00179668)) + ((CuPbZnFe) x (-0.00895706)) + 2.76 CuPbZnFe >= 55%: Assigned as 4.25 The waste material has also been assigned a bulk density using regressions but against depth below surface (DBS) <= 30m: (-0.000000067 x (DBS)⁴) + ((0.000024832 x (DBS)³) + (-0.0003106849 x (DBS)²) + (0.0153130306 x (DBS))+2.5 Depth below surface (DBS) > 30m: (0.000254 x (DBS)) + 2.738281

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. All factors considered; the resource estimate has in part been assigned to Indicated resources with the remainder to the Inferred category.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	• Whilst Mr. Barnes (Competent Person) is considered Independent of Anax, no third- party review has been completed of the September 2022 resource.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to global estimates of tonnes and grade.